If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-5k^2=-29
We move all terms to the left:
2-5k^2-(-29)=0
We add all the numbers together, and all the variables
-5k^2+31=0
a = -5; b = 0; c = +31;
Δ = b2-4ac
Δ = 02-4·(-5)·31
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{155}}{2*-5}=\frac{0-2\sqrt{155}}{-10} =-\frac{2\sqrt{155}}{-10} =-\frac{\sqrt{155}}{-5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{155}}{2*-5}=\frac{0+2\sqrt{155}}{-10} =\frac{2\sqrt{155}}{-10} =\frac{\sqrt{155}}{-5} $
| 2z/3+7=11/2 | | x2-12=613 | | F(x)=x/x^2+5x-36 | | 2x2-3=239 | | 7x-36=-3-6(-3-4x) | | 6/v=-8 | | -2b+15=2b(b-6)^1/2 | | 7/15x+3=3/5 | | 1/(1.3x-1.3)=2.1 | | X(x+2)^2(x+5)+x(x+2)^3=0 | | 2x2+2=20 | | (u+5)^2=2u^2+14u+13 | | x2-6=30 | | 3/2x-1=1.4 | | x3=50 | | -6x+4(X+2)=-10 | | x2+19=100 | | 7x-5x=8x | | x2+10=35 | | 3/2x1=1.4 | | 2y+278=2680 | | x^2-22=42 | | F(x)=24x^2+6x/2x+1 | | 6x-36=2x=-4 | | 6x-36=2x−4 | | Y=-x2-6x-9 | | 4(q+2)+3q=-20 | | (2p-3)²-3=-2 | | X+2x+4x=38 | | 3(q+2)+4q=-36 | | F(x)=4x^2-10/2x-4 | | 2k2-2k-12=0 |